Molecular structure of 1-phenyl-2-trifluoromethyl-3-benzoylaziridine

D. S. Yufit, a* Yu. T. Struchkov, a† K. I. Pashkevich, b and O. G. Khomutovb

^aA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences. 28 ul. Vavilova, 117813 Moscow, Russian Federation.

Fax: +7 (095) 135 5085

^bInstitute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 20 ul. S. Kovalevskoi, 620219 Ekaterinburg, Russian Federation. Fax: +7 (343 2) 444 133

1-Phenyl-2-trifluoromethyl-3-benzoylaziridine has been studied by X-ray structural analysis. Protons of the aziridine cycle are in trans positions. The C(1)-N(1) bond is the shortest of the corresponding bonds in aziridine derivatives, which have been studied by X-ray structural analysis previously.

Key words: molecular structure, aziridines, 1-phenyl-2-trifluoromethyl-3-benzoylaziridine.

Crystals of 1-phenyl-2-trifluoromethyl-3-benzoylaziridine (1) have been studied by X-ray structural analysis with the aim of unambiguously establishing the mutual arrangement of substituents in the molecule. The overall view of the molecule is shown in Fig. 1; the bond lengths and bond angles are given in Tables 1 and 2, respectively.

Figure 1 clearly shows that the CF₃ group is in the trans position with respect to the two other substituents in the three-membered cycle, which are in mutually cis positions. The Ph ring at the N atom is in a perpendicular conformation (p)1 (the plane of the Ph ring is perpendicular to the bisector plane of the endocyclic C(1)-N(1)-C(2) angle); the carbonyl group has a cisgauche conformation (cg) (the O(1)-C(4)-C(2)-C(1)torsion angle is 6.5°); the CF₃ group is in a staggered conformation with respect to the C(1)-C(3) bond. The dihedral angle between the planes of the carbonyl group and the C(5)-C(10) benzene ring is 17.8°. The most interesting feature of molecule 1 is the substantial shortening of the N(1)—C(1) bond to 1.438(3) Å. Apparently, this value is the smallest of the N-C bond lenghts in the derivatives of aziridine studied by X-ray structural analysis. Note that bond lengths in the aziridine cycle are very labile and vary within wide limits with the electronic nature and mutual arrangement of substituents:

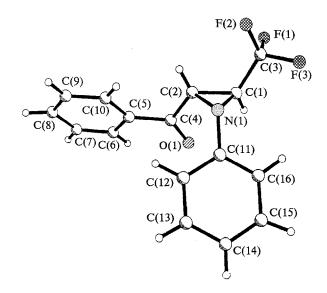


Fig. 1. Overall view of the molecule of 1-phenyl-2-trifluoromethyl-3-benzoylaziridine.

Table 1. Bond lengths (d) in molecule 1

F(1)-C(3) 1.321(4) $C(5)-C(10)$ 1.390(4) $C(13)-$	
N(1)—C(1) 1.438(3) C(2)—C(4) 1.502(4) C(11)— N(1)—C(2) 1.482(3) C(4)—C(5) 1.483(4) C(11)— N(1)—C(11) 1.430(3) C(5)—C(6) 1.388(4) C(12)— F(1)—C(3) 1.321(4) C(5)—C(10) 1.390(4) C(13)—	d/Å
F(3)—C(3) 1.342(4) C(7)—C(8) 1.375(5) C(15)— C(1)—C(2) 1.484(4) C(8)—C(9) 1.367(4)	C(12) 1.386(4)

Table 2. Bond angles (ω) in molecule 1

Angle	ω/deg	Angle	ω/deg
C(1)-N(1)-C(2)	61.0(2)	C(2)-C(4)-C(5)	118.2(2)
C(1)-N(1)-C(11)	120.1(2)	C(4)-C(5)-C(6)	119.5(2)
C(2)-N(1)-C(11)	122.0(2)	C(4)-C(5)-C(10)	121.5(2)
N(1)-C(1)-C(2)	60.9(2)	C(6)-C(5)-C(10)	119.0(3)
N(1)-C(1)-C(3)	117.1(2)	C(5)-C(6)-C(7)	119.9(3)
C(2)-C(1)-C(3)	121.3(3)	C(6)-C(7)-C(8)	120.6(3)
N(1)-C(2)-C(1)	58.0(2)	C(7)-C(8)-C(9)	120.0(3)
N(1)-C(2)-C(4)	119.6(2)	C(8)-C(9)-C(10)	120.1(3)
C(1)-C(2)-C(4)	117.2(2)	C(5)-C(10)-C(9)	120.3(3)
F(1)-C(3)-F(2)	108.2(3)	N(1)-C(11)-C(12)	119.9(2)
F(1)-C(3)-F(3)	106.2(3)	N(1)-C(11)-C(16)	119.7(3)
F(2)-C(3)-F(3)	104.8(3)	C(12)-C(11)-C(16)	120.0(3)
F(1)-C(3)-C(1)	111.7(3)	C(11)-C(12)-C(13)	119.6(3)
F(2)-C(3)-C(1)	114.0(3)	C(12)-C(13)-C(14)	120.2(3)
F(3)-C(3)-C(1)	111.4(3)	C(13)-C(14)-C(15)	119.7(3)
O(1)-C(4)-C(2)	119.7(3)	C(14)-C(15)-C(16)	121.0(3)
O(1)-C(4)-C(5)	122.1(3)	C(11)-C(16)-C(15)	119.5(3)

Table 3. Atomic coordinates ($\times 10^4$) and equivalent isotropic temperature factors $U(\times 10^3)$ for nonhydrogen atoms in the structure of 1

Atom	x	У	ζ	U/Å ²
O(1)	3502(2)	8656(2)	2499(2)	61(1)
N(1)	376(2)	9736(2)	1810(2)	38(1)
F(1)	1144(3)	10632(3)	4370(2)	105(1)
F(2)	-252(3)	11507(2)	3077(2)	86(1)
F(3)	-909(2)	9828(2)	3592(2)	83(1)
C(1)	1010(3)	9702(3)	2865(2)	44(1)
C(2)	1834(3)	10314(2)	2244(2)	40(1)
C(3)	268(4)	10428(3)	3471(2)	59(1)
C(4)	3196(3)	9678(3)	2149(2)	41(1)
C(5)	4130(3)	10335(3)	1628(2)	40(1)
C(6)	556(3)	9941(3)	1750(2)	52(1)
C(7)	6439(3)	10544(3)	1268(3)	64(1)
C(8)	5899(3)	11523(3)	650(3)	64(1)
C(9)	4484(3)	11912(3)	515(2)	55(1)
C(10)	3595(3)	11326(3)	1003(2)	45(1)
C(11)	208(3)	8620(2)	1246(2)	39(1)
C(12)	663(3)	8573(3)	395(2)	44(1)
C(13)	330(3)	7545(3)	-216(2)	54(1)
C(14)	-455(3)	6579(3)	20(2)	61(1)
C(15)	-885(4)	6627(3)	868(3)	64(1)
C(16)	-563(3)	7641(3)	1486(2)	51(1)

1.441—1.510 Å for N—C bonds (see Refs. 2, 3) and 1.450—1.504 Å for C—C bonds (see Refs. 4, 5). In the case of molecule 1, shortening of the N(1)—C(1) bond is primarily due to the interaction of the π acceptor carbonyl group with the Walsh-type orbitals of the three-membered cycle. By analogy with derivatives of cyclopropane, this should result in a shortening of the N(1)—C(1) bond and a slight lengthening of two other

Table 4. Atomic coordinates ($\times 10^3$) and isotropic temperature factors $U(\times 10^2)$ for hydrogen atoms in the structure of 1

Atom	x	y	z	$U/Å^2$
H(1)	149(1)	900(1)	318(1)	6(1)
H(2)	183(1)	1113(1)	220(1)	5(1)
H(6)	600(1)	925(1)	221(1)	6(1)
H(7)	738(1)	1026(1)	135(1)	4(1)
H(8)	661(1)	1187(1)	32(1)	9(1)
H(9)	400(1)	1257(1)	6(1)	7(1)
H(10)	261(1)	1158(1)	90(1)	4(1)
H(12)	131(1)	924(1)	26(1)	6(1)
H(13)	65(1)	757(1)	-26(1)	7(1)
H(14)	-80(1)	597(1)	-47(1)	6(1)
H(15)	-150(1)	603(1)	107(1)	5(1)
H(16)	-92(1)	774(1)	204(1)	5(1)

bonds in the aziridine cycle, which was observed previously, for example, in the structure of 1-phenyl-2,2-aziridinedicarboxamide.² The effect of the electronwithdrawing CF_3 group and π donor Ph ring at the nitrogen atom may be an additional factor, causing shortening of the endocyclic N(1)—C(1) bond. However, no substantial shortening of the endocyclic $N-C(CF_3)_2$ bond is observed in the structures of 1-alkoxy-2,2-bis(trifluoromethyl)aziridines⁶ (1.490 and 1.483 Å for two diastereoisomers, respectively); the orientation of the C(11)—C(16) benzene ring in molecule 1 is typical of N-phenyl derivatives of aziridines and provides the most favorable conditions for interaction of its π system with the lone electron pair of the nitrogen atom; this orientation is highly unfavorable for interaction with MOs of the three-membered cycle. Therefore, the effect of the benzoyl group remains the major reason for asymmetry of the three-membered cycle of molecule 1.

The remaining geometric parameters of the molecule have normal values; no shortened intermolecular contacts are observed in the crystal.

Experimental

Crystals of 1 are monoclinic (crystals were obtained according to a known procedure⁷), at 20 °C a = 9.478(3) Å, b =10.822(2) Å, c = 14.093(4) Å, $\beta = 106.43$, Z = 4, $C_{16}H_{12}F_3NO$, space group $P2_1/n$. The unit-cell parameters and intensities of 2850 independent reflections, of which 2151 with $I \ge 2\sigma(I)$ were used for solving and refining the structure, were measured on a Siemens P3/PC diffractometer (Mo-Ka radiation, graphite monochromator, θ/2θ scanning technique, $\theta \le 30^{\circ}$). The structure was solved by the direct method and refined by the full-matrix least-squares method with anisotropic thermal parameters for all nonhydrogen atoms (Table 3). The H atoms were located from the difference series and were refined isotropically (Table 4). The final values of the R factors were as follows: R = 0.086, $R_{\rm w} = 0.083$. All calculations were performed on an IBM PC/AT computer using the SHELX PLUS program package.

References

- 1. F. A. Allen, Acta Crystallogr., 1980, B36, 81.
- S. Brückner, L. Malpezzi, A. V. Prosyanik, and S. V. Bondarenko, Acta. Crystallogr., 1985, C41, 215.
- D. Delugeard, M. Vaultier, and J. Meinnel, Acta. Crystallogr., 1975, B31, 2885.
- A. B. Zolotoi, O. A. D'yachenko, L. O. Atovmyan,
 V. F. Rudchenko, I. I. Chervin, and R. G. Kostyanovskii,
 Khim. Geterotsikl. Soedin., 1984, 48 [Chem. Heterocycl. Compd., 1984 (Engl. Transl.)].
- Z. Kaluski, E. Gzhesiak-Figas, V. D. Orlov, and F. G. Yaremenko, Zh. Strukt. Khim., 1990, 31, 155 [J. Struct. Chem., 1990, 31 (Engl. Transl.)].
- R. G. Kostyanovskii, G. K. Kadorkina, A. B. Zolotoi,
 O. A. D'yachenko, L. O. Atovmyan, I. I. Chervin, and
 Sh. S. Nasibov, *Dokl. Akad. Nauk SSSR*, 1983, 269, 1103
 [Dokl. Chem., 1983, 269 (Engl. Transl.)].
- O. G. Khomutov, V. I. Filyakova, and K. I. Pashkevich, *Izv. Akad. Nauk, Ser. Khim.*, 1994, 282 [Russ. Chem. Bull., 1994, 43, 261 (Engl. Transl.)].

Received January 10, 1995